The NADH dehydrogenase of the respiratory chain of Escherichia coli. II. Kinetics of the purified enzyme and the effects of antibodies elicited against it on membrane-bound and free enzyme.
نویسندگان
چکیده
The purified respiratory chain NADH dehydrogenase of Escherichia coli oxidizes NADH with either dichlorophenolindophenol (DCIP). ferricyanide, or menadione as electron acceptors, with values for NADH are similar with the three electron acceptors (approximately 50 muM). The purified enzyme contains no flavin and has an absolute requirement for FAD, with Km values around 4 muM. The pH optimum of the enzyme appears to be between 6.5 and 7; the optimum is difficult to establish because of nonenzymatic reduction of DCIP at the lower pH values. Potassium cyanide stimulates the DCIP reductase activity about 2-fold, but has no effect on ferricyanide reductase. The enzyme exhibits hyperbolic kinetics with respect to NADH concentration in both the ferricyanide and DCIP reductase assays, but cooperatively is seen in the menadione reductase reaction. NAD+ is an effective competitive inhibitor of the reaction (Ki congruent to 20 muM); in the presence of NAD+, the NADH saturation curve becomes cooperative, even in the DCIP reductase assay. Many adenine containing nucleotides are competitive inhibitors of the enzyme. The apparent Ki values for these nucleotides as inhibitors of the purified enzyme, the membrane-bound NADH dehydrogenase, and the NADH oxidase are equivalent. An examination of inhibitory effects of a series of adenine nucleotides suggests that the inhibitors act as analogues of NAD+, which is the true physiological inhibitor. The results suggest that the enzyme in situ is always partially inhibited by the levels of NAD- in the E coli cell, and thus behaves in a cooperative fashion to changes in the NAD+/NADH ratio. An antibody has been elicited against the purified NADH dehydrogenase. Immunodiffusion and crossed immunoelectrophoresis show that the antibody is directed principally against the NADH dehydrogenase, with some activity against minor contaminants in the purified preparation. The antibody inhibits NADH dehydrogenase activity 50% at saturating levels. When this antibody preparation is used to examine solubilized membrane preparations, two major immunoprecipitates are found. A parallel inhibition of the membrane-bound NADH dehydrogenase and NADH oxidase activities is seen, supporting the hypothesis that the purified enzyme is indeed a component of the respiratory chain-dependent NADH oxidase pathway.
منابع مشابه
Immunogenicity of enterotoxigenic Escherichia coli outer membrane vesicles encapsulated in chitosan nanoparticles
Objective(s): Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in humans, particularly in children under 5 years and travelers in developing countries. To our knowledge, no vaccine is licensed yet to protect against ETEC infection. Like many Gram-negative pathogens, ETEC can secrete outer membrane vesicles (OMVs). These structures contain various immunogenic vi...
متن کاملThe NADH dehydrogenase of the respiratory chain of Escherichia coli. I. Properties of the membrane-bound enzyme, its solubilization, and purification to near homogeneity.
The NADH dehydrogenase of the Escherichia coli respiratory chain has been identified by the following properties: (a) its location in membrane vesicles; (b) its inhibition by AMP in a fashion similar to that of the NADH oxidase; (c) its specificity for NADH, but not NADPH, with the same Km for NADH as that of the NADH oxidase; (d) its sensitivity when membrane-bound to inhibition by dicoumarol,...
متن کاملThe NADH Dehydrogenase of the Respiratory Chain of Escherichia coli
The NADH dehydrogenase of the Escherichiu coli respiratory chain has been identified by the following properties: (a) its location in membrane vesicles; (b) its inhibition by AMP in a fashion similar to that of the NADH oxidase; (c) its specificity for NADH, but not NADPH, with the same K, for NADH as that of the NADH oxidase; (d) its sensitivity when membrane-bound to inhibition by dicoumarol,...
متن کاملProduction of Recombinant Proline Dehydrogenase Enzyme from Pseudomonas fluorescens pf-5 in E. coli System
Proline dehydrogenase (ProDH; 1.5.99.8) belongs to superfamily of amino acid dehydrogenase, which plays a significant role in the metabolic pathway from proline to glutamate. The goal of this research was gene cloning and characterization of ProDH enzyme from Pseudomonas fluorescens pf-5 strain. The gene encoding ProDH was isolated by means of PCR amplification and cloned in an IPTG inducible T...
متن کاملSpecific Chicken Egg Yolk Antibodies against Enterotoxigenic Escherichia coli K99 in Serum and Egg Yolk of Immunized Laying Hens
Enterotoxigenic Escherichia coli K99 is one of the dominant pathogens associated with diarrhea of calves. Immunoglobulin Y (IgY), has been used as an inexpensive alternative to antibiotics for the prevention and therapy of several bacterial infections. The study aimed to prepare IgY antibodies against E. coli K99 and to investigate its in vitro effectiveness. E. c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 251 19 شماره
صفحات -
تاریخ انتشار 1976